

MK 9837N/500
MH 9837/500

Setting

Your Advantages

- Separate output signals for under and over frequency
- Simple wiring
- Easy handling

Features

- According to IEC / EN 60 255, VDE 0435 Teil 303
- Monitoring of AC voltage for under and overfrequency, can be used also for pre-warning
- Separate relay outputs for over- or underfrequency (1 or 2 changeover contacts each)
- Alternative usage for monitoring of a frequency window
- Separate adjustment of response value for over- or underfrequency at 4 ranges each, $1.5 \ldots 200 \mathrm{~Hz}$ or $5 \ldots 600 \mathrm{~Hz}$
- Second response value for prewarning possible
- Fast reaction time by measuring duration of cycle of input frequency
- Universal measuring input for AC-voltages of 15 ... 280 V as well as 30 ... 550 V
- As option with measuring input for inverters
- Programmable hysteresis of response value: 2 ... 10%
- Start up time delay programmable via terminals from $0 \ldots 50$ s e.g. continuously
- Manual or auto-reset programmable via terminals
- Galvanic separation between measuring input, auxiliary voltage and output contacts
- MH 9837/508: with galvanic separated analogue output (current/ voltage) and 11 step LED chain for the actual frequency
- MH 9837/5_0: with wide input range for auxiliary voltage available (AC/DC 24 ... 60 V or AC/DC 110 ... 230 V)
- Closed circuit operation (de-energized on trip)
- LED indication for auxiliary voltage, measuring voltage and alarm status
- Device available with 2 contacts

MK 9837N/5_0: 2×1 changeover contact MH 9837/5_0: 2×2 changeover contacts or wide auxiliary voltage range

- 2 possible compact designs:

MK 9837N/5_0: Width 22,5 mm MH 9837/5_0: Width 45 mm

Approvals and Markings

*) only MK 9837N/5_0

Application

- Monitoring of frequency in AC systems
- Monitoring of rotor frequency on slip ring motors
- Control and monitoring of motors in sewage water treatment plants
- Monitoring of output frequency on inverters
(variant /550)

Circuit Diagrams

$\mathbf{- - -}$| A1 | 11 | 12 | 14 | | 31 | 32 | 34 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A2 | 21 | 22 | 24 | | 41 | 42 | 44 |

MH 9837/500

Connection Terminals	
Terminal designation	Signal designation
A1+, A1	+/L
A2	-/ N
E0, E1, E2	Frequency input
X1, X2, X3	Programming terminals
M	Reference for programming terminals
U	Analogue output voltage
1	Analogue output current
G	Reference for analogue output
Y1	Range selection for analogue output
$\begin{aligned} & 11,12,14,21,22,24, \\ & 31,32,34,41,42,44 \end{aligned}$	"monitoring output frequency failure (2 or 4 changeover contacts)"

Functions

The auxiliary supply is connected to terminals A1-A2.
Terminals E0-E1-E2 form the measuring input. For low voltages the measuring voltage is connected to $\mathrm{E} 1-\mathrm{EO}$ and for higher voltages to $\mathrm{E} 2-\mathrm{EO}$ (see section technical data).
The input frequency is compared to the setting value for over- and underfrequency (response value f1 e.g. f2 $=$ fine tunig \times range).
As the device measures the cycle duration the fastest frequency measurement is possible (reaction time $=$ cycle time +10 ms).

If the input frequency on the measuring input E0-E1-E2 is under the response value $f 1$ less hysteresis (both upper potentiometers) and over the response value f2 (both lower potentiometers) plus hysteresis then the output relays are energized and the yellow LEDs "<f1" and "> >2 " are on.

If the frequency rises above the value off1, the relay 1 de-energizes (contacts $11-12$ close) in " 2 level mode", in "window mode" also relay 2 de-energizes (contacts 21-22 close). The yellow LED "<f1" goes off. Only when the input frequency drops under the level f1 minus hysteresis, the output relay (both relays in window mode) energize again and the yellow LED" <1 " is on.

If the frequency drops below the value of $f 2$, the relay 2 de-energizes (contacts $21-22$ close) in " 2 level mode", in "window mode" also relay 1 de-energizes (contacts 11-12 close). The yellow LED "<f2" goes off. Only when the input frequency rises above the level f 2 plus hysteresis, the output relay (both relays in window mode) energize again and the yellow LED" <2 " is on.

If manual reset is active (terminal x2 not connected) and the frequency returns to good state the relay (relays) remain in alarm position (de-energized) and the corresponding LED is off. To reset the alarm terminals X2-M must be bridged, or the auxiliary supply has to be switched off and on again.

Ilf a start-up delay is adjusted, this delay starts with the connection of the auxiliary supply. During this time the frequency is not detection is off, the yellow LEDs "<f1" and "> f 2 " flash and the output relays are in good state (energized). The start-up delay allows to avoid alarms during the starting period of a generator or motor.

Using the sliding switch on the front of the unit the user can chose between the two function modes"2-level mode" and "window mode". „2 level-mode": $\quad 2 \times 1$ c/o contacts; the output relays 1 and 2 switch separately at the corresponding response value f1 and $\ddagger 2$.
"window-mode": 2 c/o contacts; the output relays switch together at the response values for f 1 and f 2 (where $\mathrm{f} 1>\mathrm{f} 2$); i.e. the relays switch off together the frequency rises over f1 or drops under f2.

Indicators

Upper LED „UH/E":

- green, when only auxiliary voltage connected to A1-A2
- yellow/green, when measuring frequency is detected on E0-E1-E2
Lower LED „<f1" (yellow): - On, input frequency is lower than response value f1 (= relay 1 energized in " 2 -level mode")
Lower LED „>f2" (yellow): - On, when input frequency is higher than response level f2 (= relay 2 energized in " 2 -level mode") LEDs "<f1" and ">f2" flashes during start up delay

Notes

Setting of response values $\mathbf{f 1}$ and $\mathbf{f} 2$ / function energized on trip for output relays
Normally the response value f 1 is used for overfrequency and f 2 for underfrequency the hysteresis works accordingly to these settings. Both relays operate de-energized on trip. In "2-level-mode" the frequency detection and the control of the corresponding relays at the response values f1 and f 2 work completely independent. So it is possible to adjust f 2 higher than f 1 if auto reset is selected. If f 2 is used for overfrequency, the unit works energized on trip, as the relay $2(21-22-24)$ always energizes when the frequency rises above response value + hysteresis. In the same way the response value f 1 - hysteresis can be used for underfrequency so that relay $1(11-12-14)$ is energized on trip.

When using manual reset in "window mode" the response value f1 (minus hysteresis) must always be higher than f 2 (plus hysteresis) to avoid that the output relays do not switch anymore and the yellow LEDs "<f1" and " $>f 2$ " remain dark.

Frequency measuring input

The standard measuring input is divided up in to voltage ranges (E1-E0 AC $15 \ldots 280 \mathrm{~V}$ and E2-E0 AC $30 \ldots 550 \mathrm{~V}$). If the measuring voltage is always higher then AC 30 V , the higher range should be used.

To measure the output frequency on inverters the variant /550 has to be used. A special dimensioned measuring input with low pass characteristic avoids the measuring of the pulse frequency. In addition the input sensitivity is adapted to the voltage-/frequency-characteristic of inverters (see diagram in technical data).

Visual indication of measuring voltage:
If the voltage on the frequency measuring input is high enough for monitoring the upper dual color LED "UH/E" is ON yellow/green. If the voltage on the input is to low, the LED "UH/E" shows only green color.
Attention: If the measuring voltage is to low the unit reacts as on underfrequency!

Programming terminals ($\mathrm{M}-\mathrm{X} 1-\mathrm{X} 2-\mathrm{X} 3$):
Attention! The terminals $\mathrm{M}-\mathrm{X} 1-\mathrm{X} 2-\mathrm{X} 3$ have no galvanic separation to the measuring circuit (E0-E1-E2), and must be operated potential free.

M: Common connection (Ground) of the programming terminals
X1: start up delay at range of $0 . . .50 \mathrm{~s}$ is achieved by connecting a X1 to M with a potentiometer (0.25 W) or fixed resistor (see technical data). If no start up delay is required the terminals $\mathrm{X} 1-\mathrm{M}$ must be linked.

X2: \quad Manual reset with NO contact push button on X2-M, auto reset with terminals X2-M bridged.

X3: Hysteresis setting at range of $2 . . .10 \%$ is achieved by connecting the terminal X3 to M with a potentiometer (0.25 W) or fixed resistor (see technical data).
For a hysteresis of 2 \% the terminal X3 remains open; for a hysteresis of 10% s the terminals X3-M must be linked.

Start up delay

A start up delay ($\mathrm{t}_{\mathrm{A}}=0 \ldots 50 \mathrm{~s}$) adjusted by connecting a resistor $0 \ldots 500 \mathrm{kOhm}$ to the terminals X1 and M see technical data. This start up delay is started when connecting the auxiliary supply. During this time monitoring is disabled and both output relays are energized. If the connection between X1 and M is open circuit (resistance $>500 \mathrm{kOhm}$), the startup delay is continuously on. With this possibility the frequency monitoring can be disabled by an external contact until e.g. a system reaches its normal operation status. When the circuit X1 - M closes the time delay set by a resistor in this circuit runs down before the monitoring starts.
If no start up delay is required, the terminals $\mathrm{X} 1-\mathrm{M}$ must be linked.
There must be a connection between $\mathrm{X} 1-\mathrm{M}$ when the frequency should be monitored.
While the start up delay is active, the yellow LEDs "<f1" and ">f2" flash with 2 Hz . To adjust a specific time the number of flashing cycles can be counted. Number of cycles divided by $2=$ start up time in seconds.

Notes

Manual / automatic rese

To enable manual reset the connection X2-M remains open. Storing of the alarm influences the output relays and the corresponding LEDs.
Reset is made by closing the connection between X 2 and M or by disconnecting the auxiliary supply.

Setting of hysteresis

Connecting terminal X3 via a resistor to M adjusts the hysteresis. Both response values (f 1 and f 2) have the same hysteresis in percentage of the adjusted response values. So the absolute value of the hysteresis is higher on the higher response value then on the lower response value.

Variant MH 9837.38/508: (45 mm width)
Identically to MK 9837N.38/500, but with 11 step LED chain indicator and galvanic separated analogue output to display the actual measured frequency. On terminals U / G of the analogue output $0-10 \mathrm{~V}$ are provided, on terminals I/G 0 ... 20 mA are available. By bridging terminals Y1 and G the output can be switched over to $2 \ldots 10 \mathrm{~V}$ and $4 \ldots 20 \mathrm{~mA}$. The max. value of the analogue output is indicating 2 times of the max. value of the selected range this allows also to indicate overfrequency values. The scaling is linear to the input frequency (lowest analogue value is 0 Hz). The LED chain indicator shows on 10 LEDs the actual frequency ($\leq 10 \% \ldots 100 \%$ of the setting range). If the frequency exceeds the maximum value of the range the idicator is switched over to 2 x max value and the top LED (red) is on.

Technical Data

Frequency Measuring Input (E0-E1-E2)

Standard-frequency measuring

Voltage range

E0-E1:	AC $15 \ldots 280 \mathrm{~V}$,
E0-E2:	AC $30 \ldots 550 \mathrm{~V}$
Input resistance	
E0-E1:	approx. $300 \mathrm{k} \Omega$
E0-E2:	approx. $850 \mathrm{k} \Omega$

Frequency measuring input for inverters (variant /550)

Max. input voltage:	AC 550 V
Min. measuring voltage:	approx.. AC 10 V (at1 Hz) ... AC 150 V
	(at 200 Hz); (see characteristic M8681)
Input resistance:	approx. $900 \mathrm{k} \Omega$

Common Data for Both Measuring Inputs

Galvanic separation:
Frequency measuring input to auxiliary voltage and output contacts

Frequency ranges: (separately selectable for f1 and f2)

| $1.5 \ldots 6 \mathrm{~Hz}$ | $5 \ldots 20 \mathrm{~Hz}$ | $15 \ldots 60 \mathrm{~Hz}$ | $50 \ldots 200 \mathrm{~Hz}$ or |
| :--- | :--- | :--- | :--- | $5 \ldots 20 \mathrm{~Hz} \quad 15 \ldots 60 \mathrm{~Hz} \quad 50 \ldots 200 \mathrm{~Hz} \quad 150 \ldots 600 \mathrm{~Hz} 4$ ranges selectable each

Response time f1, f2 (response value):
Tolerances of the adjusted tripping values at variation of auxiliary supply and temperature:
Hysteresis:

	resitor/potentiometer across terminals X3-M					
Resistance:	0	$15 \mathrm{k} \Omega$	$39 \mathrm{k} \Omega$	$120 \mathrm{k} \Omega$	∞	
Hysteresis:	10%	8%	6%	4%	2%	

Reaction time of
Frequency monitoring:
Start up delay:
Duration of 1 cycle (inverse value of adjusted frequency) +10 ms adjustable from $0 \ldots 50$ s with resitor/potentiometer across terminals X1-M:

$\mathrm{R} / \mathrm{k} \Omega:$	0	15	22	33	47	68	100	150	220	470	∞
$\mathrm{t}_{\mathrm{v}} / \mathrm{s}:$	0	0,3	0,7	1,3	2,3	5	9	15	25	50	∞

Time between connection of auxiliary supply and ready to mesure:

Technical Data

Auxiliary Circuit (A1-A2)

Auxiliary voltage $\mathbf{U}_{\mathbf{H}}$
(galvanic separation):

Voltage range

AC:
DC:
AC/DC:
Frequency range
AC:
Nominal consumption:
AC:
DC:

AC 115, 230, 400 V
DC 12, 24, 48 V
AC/DC 24 ... 60, 110 ... 230 V (only for MH -version possible)
$0.8 \ldots 1.1 U_{H}$
$0.9 \ldots 1.2 U_{H}$
$0.75 \ldots 1.2 \mathrm{U}_{\mathrm{H}}$
45 ... 440 Hz
approx. 4 VA
approx. 2 W

Output (11-12-14, 21-22-24 + 31-32-34, 41-42-44 at MH 9837.39/5_0)

Contacts:

MK 9837N.38/5_0:

MH 9837.39/5_0:

Thermal current $I_{\text {th }}$:
Switching capacity
to AC 15
NO contact: 3 A / AC $230 \mathrm{~V} \quad$ IEC/EN 60 947-5-1
NC contact: $\quad 1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1
to DC 13
NO contact:
NC contact:
Electrical life
to AC 15 at 1 A, AC 230 V :
Short circuit strength
max. fuse rating:
Mechanical life:
2×1 changeover contact
(1 each for over- and underfrequency alarm)
2×2 changeover contacts (2 each for over- and underfrequency alarm) 4 A

1 A / DC $24 \mathrm{~V} \quad$ IEC/EN 60 947-5-1
1 A / DC 24 V IEC/EN 60 947-5-1
$1,5 \times 10^{5}$ switching cycles IEC/EN 60 947-5-1

4 A gL
EC/EN 60 947-5-1
$\geq 30 \times 10^{6}$ switching cycles

Analogue Output with MH 9837.38/508

galvanic separation AC 3750V

to auxiliary supply, measuring circuit and relay outputs
terminal $\mathrm{U}(+) / \mathrm{G}(-)$: $\quad 0 \ldots 10 \mathrm{~V}$, max. 10 mA
terminal I (+) / G(-): $\quad 0 \ldots 20 \mathrm{~mA}$, max. burden 500 Ohm
change to $2 \ldots 10 \mathrm{~V}$ or $4 \ldots 20 \mathrm{~mA}$ by bridging terminal Y 1 and G . scaling is linear with frequency (lowest value at $f=0$, highest value at $2 \times$ max setting value)

General Data

Nominal operating mode: continuous operation
Temperature range:
$-20 \ldots+60^{\circ} \mathrm{C}$
Clearance and creepage distance
rated impulse voltage /
pollution degree:
output to measuring circuit: 4 kV / 2 IEC 60 664-1
output to auxiliary circuit: $\quad 4 \mathrm{kV} / 2 \quad$ IEC 60 664-1
utput to output:
auxiliary circuit to
measuring input:
Programming terminals
M-X1-X2-X3:
EMV
Electrostatic discharge (ESD): 8 kV (air) IEC/EN 61 000-4-2
Fast transients: 2 kV IEC/EN 61 000-4-4

Surge voltage
between
wires for power supply: 1 kV IEC/EN 61 000-4-5 between wire and ground: $\quad 2 \mathrm{kV}$ IEC/EN 61 000-4-5 HF-wire guided:
Interference suppression:
EC 60 664-

IEC 60 664-1
4 kV / 2
without galv. separation to measuring circuit

2 kV
10 V
IEC/EN 61 000-4-6
8 kV (air)
IEC/EN 61 000-4-4

Limit value class B

Technical Data

Degree of protection:

Housing:
Terminals:
Housing:
Vibration resistance:

Climate resistance:
Terminal designation: Wire connection:

Wire fixing:
Mounting:
Weight:
MK 9837N/5_0:
MH 9837/5_0:
MH 9837/508

Dimensions

Width x heigh x depth:
MK 9837N/5_0:
MH 9837/5_ _:

CCC-Data

Auxiliary voltage \mathbf{U}_{N} :
MK9837N/5_ _
AC 115, 230 V
DC 12, $24,48 \mathrm{~V}$
Switching capacity
to AC 15
NO contact
$22.5 \times 90 \times 97 \mathrm{~mm}$
$45 \times 90 \times 97 \mathrm{~mm}$

IP 40

IEC/EN 60529
IP 20
IEC/EN 60529
thermoplastic with VO behaviour according to UL subject 94
Amplitude 0.35 mm
Frequency 10 ... 55 Hz IEC/EN 60 068-2-6
20/060/04 IEC/EN 60 068-1
EN 50005
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$2 \times 1.5 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded wire with sleeve
DIN 46 228-1/-2/-3/-4 or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with sleeve DIN 46 228-1/-2/-3/
Plus-minus terminal screws
M3.5 box terminals with wire protection
DIN rail
IEC/EN 60715
approx. 210 g
approx. 295 g
approx. 350 g

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard Type

MK 9837N. $38 / 5002 \times 5 \ldots 600 \mathrm{~Hz} U_{H}$ AC 230 V
Article number: 0061295

- 2 adjustable response values at 4 ranges each:
$5 \ldots 20 \mathrm{~Hz}, 15 \ldots 60 \mathrm{~Hz}, 50 \ldots 200 \mathrm{~Hz}, 150$... 600 Hz
- Switchable monitoring mode: „2 Level" or „Window"
- Hysteresis: programmable via terminal: 2 ... 10 \%
- start up time delay: settalbe with external resitor 0 ... 50 s
- Alarm storing or auto-reset selectable
- Frequency input AC $15 . . .280$ V / AC $30 . . .550$ V
- Closed circuit operation
- Auxiliary voltage U .
- Output:
- Width:

AC 230 V

2 changeover contacts 22,5 mm

Variants

MK 9837N.38/550:

MH 9837.38/5_0:

MH 9837.38/508:

MH 9837.39/5_0:

Ordering example for variants

MH 9837.38 /5_0_ $2 \times 5 \ldots 600$ Hz UH AC/DC $110 \ldots 230$ V

Characteristics

Typical sensitivity of the measuring input at variant MK 9837N.12/_5_

